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ABSTRACT 

The adiabatic guiding center motion of an energetic charged particle in an 

idealized representation of the interplanetary magnetic field is discussed. Ex- 

pressions are presented for all drift velocity components. A comparison of 

these drifts establishes that, for the cases of physical interest, the electric drift 

velocity is by far the dominant d r i f t  velocity. 

Considering only the electric d r i f t  velocity, an expression is derived for 

the time of flight of a particle leaving the sun. Similarly, it is shown analytically 

that the particles remain attached to the same field line on which they left the 

sun; thus indicating their point of origin. High energy unscattered particles are 

shown to be rapidly channelled down the field lines, resulting in a highly aniso- 

tropic particle distribution in  the vicinity of the earth. These analytic results 

are in excellent agreement with numerical integration of the complete drift 

equation and compare favorably with the experimental data. 
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ON THE DYNAMICS OF A CHARGED PARTICLE 

IN A SPIRAL FIELD 

I. INTRODUCTION 

Analytic solutions are presented which describe the adiabatic guiding center 

motion of an energetic charged particle in  the idealized spiral model of the 

interplanetary magnetic field (Parker, 1958). These solutions have simple 

physical interpretation and show the dependence of the motion on the various 

solar wind and particle parameters. Illustrative figures drawn for typical values 

of these parameters a r e  also displayed. 

To estimate the validity of the  approximate method used herein, w e  solved 

numerically the complete guiding center equation of motion. Our analytic solutions 

were confirmed in all cases by these computer results and agreed with most of 

the numerical findings of Winge and Coleman (1968). In addition, the analytic 

approach provides a generalization of the computer results. 

The solutions apply to all charged particles that a r e  not appreciably scattered 

by magnetic irregularities in the interplanetary field. While many experimental 

results can be understood from the analysis herein, this paper is not meant to 

describe the exact motion of a charged particle from the sun to earth; disagree- 

ments between our results and experiments may arise because of the more com- 

plex and irregular structure of the actual magnetic field. 

II. MODEL OF THE SPIRAL FIELD 

We use the same model (Parker, 1958) for the  interplanetary magnetic field 

as w a s  discussed in some detail by Winge and Coleman (1968). The sun's surface 
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magnetic field is combed out into interplanetary space by the radial expansion of 

the perfectly conducting solar wind. Since the magnetic flux lines lie along solar 

wind streamlines when viewed in a coordinate system rotating with the sun, the 

shape of the field is determined beyond ro , the radius at which corotation ceases. 

The magnstic field is shown in Figure 1 and is written in an inertial, helio- 

centric coordinate system as 

B = Bo ( ro / r )*  L r  - n r  s in  B/yp e+] 

where the e Is are the unit vectors in the ( r ,  e ,  +) spherical polar coordinate 

directions with 0 the colatitude measured from the sun's rotation axis and 4 the 

longitude, which is positive in the direction of the sun's rotation. Bo is the radial 

component of the field at r = r o ,  R is the angular velocity of the sun and Vp is 

the velocity of the solar wind, which is assumed constant and radial. For the re- 

mainder of this paper in numerical examples, we shall choose ro = 1.38 X 10" cm 

o r  twice the radius of the sun, Bo = 5 x 

R = 2.90 x 

(1AU/ro)2  gauss = 0.591 gauss and 

rad-sec-' . Vp shall be a constant parameter in the problem. 

The magnetic field may be simply expressed by using a unit vector e , , 
which lies along the magnetic field, as 

B = Be, = Bo ( r o / r ) 2  sec a e l  (2) 

where 

- e l  - cos a e r  - s in  a e+  

The angle a between B and e r  is given by 
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a = tan" (-B4/Br) = tan-' (r /a)  

with the quantity a being a convenient scaling length: 

a = V p / ( "  s in  e )  (5 ) 

It is the radius at which the magnetic field makes an angle of 45" with respect to 

e r  . For Vp = 5 X l o 7  cm-sec-l , a = 1.72 x 1013 cm at B = 90". 

In the inertial system there is an electric field, 

1 
E = - ; Vp x 6 = - ( l /c )  Q s in  8 Bo r:/r e o  

1 - - - ; Vp r B C O S  a/a e g  

where c is the velocity of light. This electric field results from the convection 

of the magnetic field lines out with the solar wind speed. It should be noted that 

no electric field would be seen in a reference system moving with the solar wind 

plasma o r  in  a reference system rotating with the sun. 

III. CHARGED PARTICLE DYNAMICS 

To simplify the discussion of the motion of a charged particle in  a non- 

uniform electromagnetic field w e  use guiding center theory, that is, w e  concern 

ourselves with the motion of the guiding center, the point about which the particle 

may be considered to be gyrating. The particle itself may be shown to be nearby. 

The conditions under which guiding center theory is valid have been discussed by 

A l f v h  and FBlthammar (1963) and presented for our problem by Winge and 

Coleman (1968) as the criteria for adiabatic invariance. These cri teria were 

shown to be satisfied for all but extremely high energy particles. 
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The guiding center velocity V may be written in terms of a velocity VI, 

along the field and a velocity V,, the drift velocity, perpendicular to the field, as 

v = v,, t v, (7 ) 

The actual particle velocity is V plus V c  , the velocity due to the gyration motion 

about the guiding center. 

Northrop (1963) has expressed the drift velocity of a particle with mass m ,  

charge e and magnetic moment p as 

r 1 

v, - - B X  e l  l - c E t y V B t -  PC m c  ( V I , - + - -  d e l  
e d t  d t  

where the electric drift velocity 

U, = cE x e l / B  

and the gravitational acceleration 

- 
g - - M, G e r / r 2  

M, and G being the solar mass and the universal gravitational constant, respec- 

tively. The first two terms of the right hand member of Equation (8) are readily 

identified as the electric drift and the gradient B drift, while the remaining 

three terms account for the acceleration drift. 

Some care must be taken in the evaluation of the magnetic moment p ,  which 

is an adiabatic invariant of the motion. The Appendix discusses this point and 

shows why for most cases w e  choose 
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where V, is the total particle velocity and + is the pitch angle, that is, the angle 

between the particle's total velocity vector and the magnetic field. 

IV  . DRIFT VELOCITIES IN A SPIRAL FIELD 

A. Expressions for Velocities 

Using the representation of the spiral field given by Equations (1) and (6), 

w e  w i l l  now obtain an explicit formula for each drift term in Equation (8). This 

wi l l  permit u s  to demonstrate that the electric drift is by Far the largest term,  

which wi l l  enable us  to  give a complete and accurate, although approximate, 

description of the guiding center motion. 

The electric drift is 

The gradient of the Field magnitude is 

VB = - [ (r2 t 2 a 2 ) e r  - r2 cot e e , ]  
r ( r 2  + a 2 )  

which gives the gradient B drift as 

d 
For  a steady state problem, the operator dt in Equation (8) reduces to 

lowest order to the convective derivative along 6: 

a - v,, (el' V) - VI, as 
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Hence the acceleration terms are 

mc 

-A 1 e B  VI1 dt - e B  
u = - - v,: ( r2  + a2)-3/2 ( - r 2  cot e er meet de  1 

mc Vp Vi1 a 

e B  ( r 2  + 
- - - (r '  cot e er  - a 2  eg t r a  cot e e+) (14) mcel  '"E 

x -  u = - -  
-A 2 e B d t  

We can combine results (10) through (15) by defining the total drift velocity 

as 

(17) 

t e B  (r2 t a2>-2 cot e 
m c Vp V,, a r 2  
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It is of interest to note that Vdr  and Vd4 for particles in the equatorial 

plane a re  due entirely to the electric drift and that all other drifts are propor- 

tional to the mass of the particle. 

B. Comparison of Velocities 

To demonstrate that U, is the dominant drift, we proceed in the following 

manner: 1.) we find the largest contributor to the 8 drift; 2 . )  we show that the 

(r ,  4 )  drifts are at most comparable to their 8 counterparts; and 3.) w e  com- 

pare the term in part 1.) to U, and show it is small. 

1.) We first consider the drift velocity in  the 8 direction, given by Equa- 

tion (19). 

We compare the various terms to the second term UAle: 

and 

It may easily be shown from these expressions that uA1, is the  dominant 8 drift 

except when the initial pitch angle is near 90". 

2 . )  We wil l  now compare t h e  various terms of the total ( r ,  4)  drift 

f [vr' t v4] 1'2 
vr 4 

with their corresponding 8 drifts: 
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UA2: v,$/v,g = - r cot 8 ( r 2  + a 2 ) l l 2 / a 2  

uc : V,$/V0 = 0 

These ratios a r e  all of order 1 or  less since r is of the same order as a .  

3.) Comparing the total electric drift velocity U, to UAle , w e  find 

To a good approximation VI, is constant. Thus for Vp = 5 x lo7 cm-sec-' 

and protons with V , ,  = 3 x l o 9  cm-sec-l 

This is a maximum at r = 2'a and there is of order For cases in 

which the initial pitch angle is close to go", UBe w i l l  be the largest contributor 

to 1.) when the particle is close to the sun. In this case v,2 would replace v;l 

in Equation (20) and the argument would proceed as before. 

Thus the electric drift dominates this problem and w e  are able to write that, 

to a very good approximation, 
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We note there is no 8 component. 

V .  PARTICLE MOTION 

In this section w e  wi l l  derive expressions which describe the motion of a 

charged particle's guiding center in the spiral magnetic field. Specifically, w e  

w i l l  consider an energetic particle (e.g., proton) of energy 6 and initial pitch 

angle $ J ~  which is injected from the sun into interplanetary space at r = ro  , 

colatitude B o  and longitude $o.  Our task is to obtain r ( t )  and +(t)  as functions 

of these initial parameters and the solar wind velocity. Since V, 2 0, B ( t )  = eo, 

within our approximation. 

A. Radial Motion 

The radial position of the guiding center is the solution of the differential 

equation 

where 

and 

(24) 

We use conservation of energy and the adiabatic invariance of the magnetic 

- 2 1 / 2  Vllr = VI, cos a - Yl,  a / ( r 2  +- a ) 

moment to determine VI, ( r ) .  The particle's kinetic energy is a conserved quan- 

tity because changes in the gravitational energy a re  entirely negligible and 
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because the electric potential energy is automatically a constant of the motion 

since the particle moves on a surface of constant 0 .  If V, 

initial speed of the particle, then 

(2G/m)' is the 

2P V: (r) is given by Equation (21) and V: ( r  ) = - B( r )  from Equation (9). m 

Using Equations (2) and (9) 

Thus Equation (25) reads 

Using this expression for V,, (r) in Equation (22) gives, in principle, r (t). Un- 

fortunately, we have not been able to perform the required integral, but some 

wel l  founded approximations wil l  enable us  to arr ive at an explicit representation 

of t ( r ) .  

We first neglect V: compared to V: since V: < V: < < V: for all particles 

under consideration. For example, a 1 Mev proton has V, = 1.38 X l o9  cm-sec-' 

while a typical solar wind velocity is 5.00 x lo '  cm-sec- '. Next,  noting that 

r t  < < a2 for all 0 ,  we can replace Equation (26) by the approximate form 
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Differences between this and the more exact Equation (26)  a r e  significant only 

for r 2 a , when V," < < V;. Thus 

v,, 2 V, [I - r: sin2 +o/r2] 1 / 2  (29) 

Using similar arguments, w e  neglect Vd, compared to V,, and obtain the 
t 

radial equation of motion 

which may be integrated to give 

(r2 t a2)lI2 - ro cos $0 (ro t a2) 
r 2  - r: sin2 +o) 1 / 2  

(31) 

This gives the flight time for a particle to reach a distance r from the sun i f  it 

is injected at ro  with velocity V, and pitch angle +o. It is plotted for various 

initial conditions in Figure 2 .  

If w e  consider ro < < r, a ,  then Equation (31) for 8 = 90" simplifies to 

r 
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It is easily shown that for  large r , t - r3’2 , which agrees with the asymptotic 

slope of 3/2 seen in Figure 2. 

Lin and Anderson (1967) have tabulated over 25 prompt solar electron 

(>40 Kev) events for the years 1964-1966. The shortest travel time recorded 

for the electrons w a s  1500 seconds, while the longest w a s  5000 seconds. A 

travel time of 2000 seconds w a s  typical. We find that 40 Kev electrons would 

move from ro  to the earth in our model in 1950 seconds, 1550 seconds and 

1400 seconds for Vp = 200 km-sec-l , 350 km-sec-I and 500 km-sec”, respec- 

tively. These results a r e  nearly independent of the initial pitch angle and, since 

they deal with the lowest energy particle measured, they a r e  the longest travel 

times that would be measured according to our theory. The fact that larger 

travel times a re  measured indicates that path length is longer than assumed (a 

more irregular field) and/or injection of the particles at the connecting field 

line takes place later in the event. The latter explanation would mean that the 

particles either take some time to diffuse to the correct field lines at the sun o r ,  

more simply, particle injection occurs after electromagnetic emission. 

Fan, Pick, Pyle, Simpson and Smith (1968) have reported solar proton (0.6 - 

13.0 MeV) events during 1966 and have found travel times of typically l o 4  
(* 2 x lo3)  seconds. We illustrate in Figure 3 how the time of flight of a 13.0 Mev 

proton in the simple spiral field would vary with the solar wind velocity Vp from 

Equation (31). The flattening of the curve at high Vp illustrates the straightening 

of spiral field lines. Once again, we emphasize that these results are a lower 

bound on the problem. The remarks of the above paragraph also apply here. 
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B. Azimuthal Motion 

A calculation of the azimuthal motion is most easily done in  a reference 

frame which is rotating with the sun. If V: and V i  denote the velocity components 

of the guiding center in this frame, then 

(34) 

Clearly, 

which shows that the guiding center trajectory moves out a spiral magnetic field 

line when viewed in the rotating (solar) frame. This occurs because there is no 

electric field in the rotating frame and, hence, no electric drift. An inertial 

observer would describe the motion as analogous to that of a bead sliding outward 

along a spiral w i r e ,  which is rotating with the angular velocity R ,  o r  would say 

that the particle's 4 is the 4 of the spiral field line minus the 4 through which 

the sun has rotated during the particle's flight. This result may be expressed 

analytically as 

R s in  8 Po - r] + t ( r )  - 

vP 
6 - 4 0  - 
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with t (r) being given by Equation (31) and +o being + at r o ;  it is shown in 

Figure 4. We note that a solar wind particle, which is injected radially at ro ,  

with V, = V p ,  has 6 = +o. 

The last term in Equation (36) is important i f  the particle energy is small 

o r  i f  the field is tightly coiled, that is, if Vp is small o r  r is large. For most 

cases,  however, w e  a re  justified in ignoring the last te rm as well as ro . Then, 

i f  a particle is  received at earth, we can say, within our approximate model, 

that the flare causing the particle injection occurred at 

This is an equation that has been used in the past but now it has somewhat more 

justification. Lin and Anderson (1967) have shown that the average heliographic 

longitude for simple (using their terminology) electron events is 58" West. This, 

from Equation (37), would correspond to an average solar wind velocity of about 

425 km-sec" , quite a reasonable value for solar minimum. 

C . Particle Anisotropy 

We have shown in the previous section that particles move out the magnetic 

field lines upon which they were injected. A s  a last point, w e  show how the parti- 

cles a r e  rapidly channelled down the magnetic field lines. The average pitch 

angle seen by a stationary observer is given by 

Using Equations (21) and (26), w e  may write 
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- 
We see that at r = r o ,  $J 2 $ J ~  and at r > >  a,  

is energy independent and measures the effect of B (r) on Vc (r). The complete 

2 sin-' (Vp/VT). The first term 

behavior of 

where the asymptote of sin-' (Vp /VT) is clearly small. Hence at the earth, 

any unscattered particles should have a highly anisotropic distribution; the 

anisotropy axis should lie near the field direction. These conclusions a r e  in 

substantial agreement with the experimental results of Fan et al. (1968) and 

McCracken, Rao and Bukata (1967). 

as a function of r for Vp = 500 km-sec-' is shown in Figure 5, 

VI. SUMMARY 

We have investigated the dynamics of an energetic charged particle in a 

spiral model of the interplanetary magnetic field. After showing that the electric 

drift velocity is the only large dr i f t  velocity, we were able to arrive at approxi- 

mate analytic solutions for the adiabatic motion of the guiding center of the 

particle. 

These solutions show that the guiding center of the particle moves like a 

bead sliding outward along a spiral wire which is rotating with the angular 

velocity of the sun. The spiral wire represents the field line on which the 

particle starts. A reasonably simple expression is presented for the time of 

flight, which is inversely proportional to the total particle velocity but which has  

a more complex dependence upon the distance from the sun, the solar wind 
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velocity and the initial pitch angle. Our calculations indicate that the particles 

have a highly anisotropic distribution upon arrival at the vicinity of the earth. 

The above findings are shown to be in substantial agreement with experi- 

mental data on unscattered solar cosmic rays. The expressions presented 

generalize and lend physical interpretation to the computer results of Winge 

and Coleman (1968). 
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APPENDIX: EVALUATION OF p 

The magnetic moment p is a measure of the flux enclosed when the particle 

circles the guiding center. As  an adiabatic invariant of the motion, it is a 

powerful tool in solving for the motion along the field lines. The classical 

description is 

- 
p - m V 2 / 2 B  = mV: sin2 + / 2 B  (A-1) 

The last step is only true when V, < < V, sin $I. At other times care must be 

exercised. We define p in terms of the instantaneous vector velocity perpen- 

dicular to the field line VI, - 

The case of zero magnetic moment a r i ses  when the particle is injected with 

just the drift velocity (VI 

does not gyrate at all, is unaffected by a gradient B drift and continues to move 

across  the field at V,. This illustrates how a solar wind particle is permitted 

to move across the interplanetary magnetic field. 

= V,). This is of particular interest; the particle - 

There is some ambiguity in Equation (A-2) because VI, is usually defined - 
in te rms  of only an angle $Io and an energy. Thus the direction of VI is un- 

known; w e  arbitrarily choose it to lie in the positive 4 direction in the (r ,  4) 

plane. 

- 

The magnitude of VI, is V, sin +, which wi l l  dominate V, in this problem - 
for all pitch angles except when $J - 0 (vd/vT)' It must be emphasized, however, 
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that th i s  is a weak restriction. Thus for almost all cases Equation (A-1) is an 

accurate expression for the magnetic moment. 
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FIGURE HEADINGS 

Figure 1. Spiral field configuration, showing parameters and coordinate system. 

Figure 2.  Time of flight versus r for protons injected at r o. 

Figure 3. Time of flight for a proton injected at ro to reach 1 A.U. versus the 

solar wind velocity Vp . 

Figure 4. Actual proton trajectory. Dots show the position of the particle in 
4 

intervals of 10  seconds. 

Figure 5. Average pitch angle versus r for protons injected at r,, . Note that 

decreases rapidly with increasing radius. 
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